Critical role for CuZn-superoxide dismutase in preventing angiotensin II-induced endothelial dysfunction.

نویسندگان

  • Sean P Didion
  • Dale A Kinzenbaw
  • Frank M Faraci
چکیده

The goal of the present study was to test the hypothesis that the CuZn isoform of superoxide dismutase (CuZnSOD) protects against angiotensin II (Ang II)-induced endothelial dysfunction. Vascular responses of carotid arteries from control, CuZnSOD-deficient (CuZnSOD(+/-)), and CuZnSOD transgenic mice were examined in vitro after overnight incubation with either vehicle or Ang II (1 or 10 nmol/L). In control mice, acetylcholine produced concentration-dependent relaxation that was not affected by 1 nmol/L Ang II. In contrast, relaxation to acetylcholine in arteries from CuZnSOD+/- mice was markedly and selectively attenuated after incubation with 1 nmol/L Ang II (eg, 100 micromol/L acetylcholine produced 93+/-6% and 44+/-15% relaxation in vehicle- and Ang II-treated arteries, respectively). A higher concentration of Ang II (10 nmol/L) selectively impaired relaxation to acetylcholine in arteries from control mice (eg, 100 micromol/L acetylcholine produced 96+/-4% and 45+/-7% relaxation in vehicle- and Ang II-treated vessels, respectively). In contrast, 10 nmol/L Ang II had no effect on responses to acetylcholine in carotid arteries from CuZnSOD transgenic mice (or in control mice treated with the superoxide scavenger Tiron [1 mmol/L]). Superoxide levels in control mice were higher in aorta treated with Ang II than with vehicle and were markedly reduced in CuZnSOD transgenic mice. These findings provide the first direct evidence that CuZnSOD limits Ang II-mediated impairment of endothelial function and that loss of 1 copy of the CuZnSOD gene is sufficient to enhance Ang II-induced vascular dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sex differences in protection against angiotensin II-induced endothelial dysfunction by manganese superoxide dismutase in the cerebral circulation.

Angiotensin II (Ang II) produces oxidative stress and endothelial dysfunction in blood vessels. The vasculature from females may be protected against deleterious effects of Ang II. We tested the hypothesis that manganese superoxide dismutase (MnSOD) protects against Ang II-induced endothelial dysfunction. Experiments were performed in C57Bl/6, wild-type (MnSOD(+/+)), and MnSOD-deficient (MnSOD(...

متن کامل

Atorvastatin prevents angiotensin II-induced vascular remodeling and oxidative stress.

Angiotensin II (Ang II) modulates vasomotor tone, cell growth, and extracellular matrix deposition. This study analyzed the effect of atorvastatin in the possible alterations induced by Ang II on structure and mechanics of mesenteric resistance arteries and the signaling mechanisms involved. Wistar rats were infused with Ang II (100 ng/kg per day, SC minipumps, 2 weeks) with or without atorvast...

متن کامل

Ceramide-induced impairment of endothelial function is prevented by CuZn superoxide dismutase overexpression.

OBJECTIVE Ceramide is an important intracellular second messenger that may also increase superoxide. The goal of this study was to determine whether overexpression of CuZn superoxide dismutase (SOD) protects against ceramide-induced increases in vascular superoxide and endothelial dysfunction. METHODS AND RESULTS Carotid arteries from CuZnSOD-transgenic (CuZnSOD-Tg) and nontransgenic litterma...

متن کامل

Gene transfer of superoxide dismutase isoforms reverses endothelial dysfunction in diabetic rabbit aorta.

Increased production of oxygen free radicals is an important mechanism of endothelial dysfunction in diabetes mellitus. Our goal was to test whether adenovirus (Ad)-mediated gene transfer of copper/zinc (CuZn) or manganese superoxide dismutase (Mn SOD) improves relaxation of diabetic vessels. The aortas from 9 alloxan-induced diabetic mellitus (DM) and 16 control rabbits were used. Control and ...

متن کامل

Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice.

Vascular disease states are associated with endothelial dysfunction and increased production of reactive oxygen species (ROS) derived from vascular NADPH oxidases in both vascular smooth muscle cells (VSMCs) and endothelial cells. Recent evidence suggests an important role for VSMC NADPH oxidases in vascular ROS production. However, it is unclear whether increased NADPH oxidase activity in endo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2005